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Supplementary Text, Figures, and Tables for “Effects of Increasing Aridity on Ambient 
Dust and Public Health in the U.S. Southwest under Climate Change” 
 
Additional data and analysis codes are provided as supplemental files. 
 
S1. IMPROVE data 
The IMPROVE definition of “Fine Soil” relies on the mass concentrations of common soil-
derived elements (aluminium, silicon, calcium, iron, and titanium) and their normal oxides, along 
with a correction factor to account for other species such as water and carbonate [Malm et al., 
1994, 2004]. However, Hyslop et al. [2015] discovered that changes in analytical methods 
between 1995 and 2010 may have introduced spurious temporal trends in aluminium, silicon, 
and titanium. To assure the quality of the fine dust data over the 2000-2015 timeframe, we use 
the iron content of filter samples as a fine dust proxy, following the approach first proposed by 
Hand et al. [2016] and subsequently updated by Achakulwisut et al. [2017]. Here we calculate 
site-specific monthly mean fine dust concentrations as follows. (1) We neglect any sites at which 
PM2.5-Iron is measured below the minimum detection limit on more than 20% of all days. (2) We 
screen out “high-combustion” days when the elemental carbon (EC) concentration exceeds a 
threshold value, defined here as the 2000-2015 EC monthly mean + 1 standard deviation for a 
given site. (3) If at least 50% of daily data are available for a given site and month, we calculate 
monthly mean PM2.5-Iron concentrations from the daily values. (4) We approximate monthly 
mean fine dust concentrations as 6.5% PM2.5-Iron, based on observed linear relationships 
between daily PM2.5-Iron and IMPROVE “Fine Soil” from 2011 to 2015 (Figure S9). Since 
2011, a new Panalytical XRF system has been used to determine elemental concentrations at all 
IMPROVE sites [Hand et al., 2017]. Lawrence and Neff [2009] demonstrated that on average 
globally, the concentrations of most major elements in airborne dust tend to be similar to the 
composition of the upper continental crust. For iron, the observed global mean value is 3.6% 
(range of 1.3-7.8%). (5) Finally, we screen out sites with less than 50% monthly data for the 16-
year time period. On average, the analytical uncertainties associated with our calculated monthly 
mean fine dust values are ~0.06% using error propagation. Further details behind our choice and 
method in using PM2.5-Iron as a proxy for fine dust are provided in the Supplement of 
Achakulwisut et al. [2017].  
 
S2. Additional information on CMIP5 model selection in the CIRA framework 
As in many sectoral impact analyses in the literature, the selection of a subset of climate models 
is necessary due to computational, time, and resource constraints. The six CMIP5 models used in 
this analysis were chosen primarily based on their ability to capture variability in temperature 
and precipitation in the United States. While many different metrics could be used in this type of 
comparison, the broader research effort, of which this work is a part, based selection on an 
accepted approach – comparing the projections from CMIP5 models for annual and seasonal 
temperature and precipitation [Martinich and Crimmins 2019]. 
 
Besides model performance, our selection criteria included model independence and broader 
usage by the scientific community. The CMIP5 models vary in their ability to resolve certain 
climate system processes, including those most relevant to the United States. In addition, while 
over 60 different CMIP5 models are available, a number of the models share computer code or 
are parametrized in similar ways. Recent studies [Sanderson et al. 2015a, 2015b; McSweeney et 
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al. 2015] provide analysis of both model skill at the global scale and independence of underlying 
code. Ultimately, we apply equal weight to each of the results derived using the six models, but 
we also provide the model specific results to facilitate analysts who wish to employ other 
weighting criteria (using, for example, Eyring et al. 2019). 
 
With insufficient resources to conduct a country-specific weighting analysis based on skill and 
independence, a qualitative consideration of these metrics is still valuable. For purposes of this 
project, the six GCMs selected were developed by different, well-known modeling groups whose 
models are frequently used in the literature. In addition, three of the GCMs (CCSM4, GISS-E2-
R, and GFDL-CM3) are developed by domestically-based modeling groups (NCAR, NASA, and 
GFDL, respectively). There is some expectation that modeling teams may pay closer attention to 
the regional climate in the region where the team is based, and that therefore domestically-based 
modeling groups might have comparatively greater skill for purposes of impacts analysis in the 
United States. 
 
S3. Sensitivity analysis of the value of a statistical life (VSL) and total valuation estimates to 
alternative economic growth and income elasticity inputs 
 
As outlined in the main text, we estimate the economic value of projected health burdens based 
on federal guidance and valuation functions included in the BenMAP-CE model. For mortality 
endpoints, we use a base VSL of $7.9 million ($2008) based on 1990 incomes. To create a VSL 
using $2015 and based on 2015 incomes, the standard value was adjusted for inflation and 
income growth. The resulting value, $10.0 million for 2015 ($2015), was adjusted to future years 
to reflect the impact of income growth on individual willingness-to-pay to reduce mortal risk 
over time, and to our “current climate” base year of 2010, by assuming an elasticity of VSL to 
GDP per capita of 0.4. The income elasticity is based on empirical evidence that indicates that 
VSL grows about 0.4% for each 1% increase in GDP/capita – the specific value provided in 
BenMAP-CE – 0.4 - reflects a literature review completed in the mid 1990s. 
 
Recent literature provides a basis for projecting GDP/capita through our full simulation period 
(through 2100), and for potentially updating the income elasticity. A recent literature review 
suggests that income elasticity values as high as 1.0 might be more consistent with emerging 
literature on the topic (see for example Robinson et al. 2018) – the implication of which is that 
VSL would grow proportionately with GDP/capita.   
 
The results of these sensitivity tests are presented in Table S7. The first row shows the VSL used 
in the estimates presented in the main text. Using a value of 1.0 for income elasticity, yields 
higher estimates, ranging from 16% higher in 2030 to 87% higher in 2090 than the VSL 
estimates used in the main text. 
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Figure S1. Timeseries of 2000-2014 monthly mean SPEI02 and soil moisture (volumetric %) at 
one site in Arizona (site #2026) and another in New Mexico (site #2015), using soil moisture 
measurements from the Soil Climate Analysis Network (SCAN). The orange line shows SPEI02, 
and the blue lines show soil moisture measured at 5, 10, and 20 cm depths. The statistically 
significant correlations (p < 0.05) between SPEI02 and soil moisture range from 0.40-0.48 for 
the Arizona site, and 0.56-0.59 for the New Mexico site, depending on the soil depth. (This 
Figure is replicated from A2018, Figure S4.) 
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Figure S2. 1986-2005 monthly mean SPEI02 averaged over 117°-103°W, 28°-40°N from the 
Spanish National Research Council (CSIC, black line), which calculates PET using the FAO 
Penman-Monteith equation versus those calculated from Livneh et al. [2015] meteorological data 
using the Modified-Hargreaves PET equation (red line). The two time series have a significant 
linear correlation (r = 0.95, p = 2.2 x 10-16). 
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Figure S3. 1986-2005 seasonal mean and standard deviation of SPEI02 averaged over 117°-
103°W, 28°-40°N, calculated from precipitation and temperature from observations (Livneh et 
al. [2015]; black) and six downscaled CMIP5 models (colored). The multi-model ensemble 
means are shown in grey. 
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Figure S4. Comparison of influence of uncertainties and variability in input variables to the CRF 
(Equation 2) for fine dust. Left panel: 95% confidence interval of relative risks (RR) for all-cause 
(m.All), cardiopulmonary (m.CPD), lung cancer mortality (m.LC) and cardiovascular (h.C) and 
respiratory (h.R) hospitalization. Middle panel: 95% confidence interval of the fine dust-SPEI02 
linear sensitivity by season. Right panel: Spread in the CMIP5 model projections of changes in 
fine dust concentrations under RCP4.5 (light blue) and RCP8.5 (dark blue) scenarios at 20-year 
averaged intervals centered around 2030, 2050, 2070, and 2090. The upper and lower limits are 
calculated as percentage differences relative to the central estimate of each category (i.e., central 
relative risk, mean slope, and multi-model mean value). 
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Figure S5. As in Figure S4 but for coarse dust. The health endpoints considered are 
cardiovascular mortality (m.C) and asthma ED visits (aed). 
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Figure S6. Projected changes in 2006-2099 fine dust averaged over the Southwest under RCP4.5 
and RCP8.5 scenarios due to changes in the drought index, SPEI02. Annual mean changes are 
calculated relative to 1986-2005. Different colors represent results for individual CMIP5 models. 
The black lines show the multi-model means.  
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Figure S7. As in Figure S6 but for coarse dust. 
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Figure S8. 1986-2099 timeseries of annual mean SPEI02 averaged over 28°-41°N and 117°-
98°W for six different CMIP5 models under RCP4.5 (top) and RCP8.5 (bottom). The thick black 
lines show the multi-model means. 
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Table S1. Drought classification based on the Standardized Precipitation Evapotranspiration Index (SPEI). Sources: Dai et al., 2011; 
Liu et al., 2014; Törnros and Menzel, 2014.  
 
SPEI values Drought/Flood classification 
SPEI ≤ −2 Extremely dry 
−2 < SPEI ≤ −1.5 Severely dry 
−1.5 < SPEI ≤ −1 Moderately dry 
−1 < SPEI ≤ 0 Mild drought 
0 < SPEI ≤ 1 Near normal wet 
1 < SPEI ≤ 1.5 Moderately wet 
1.5 < SPEI ≤ 2 Very wet 
SPEI > 2 Extremely wet 
 
 
  



	 9 

Table S2. Reference and projected population and total annual incidence. The population is the total projected population across the 
region for each health endpoint’s associated age range. Total incidence is calculated using the projected county-level incidence rates 
multiplied by projected population disaggregated into 5-year age bins. Values are expressed in thousands and rounded to two 
significant figures.  

   20-year era 
Pollutant Health Endpoint  2010 2030 2050 2070 2090 
Fine dust Hospitalization, Cardiovascular less 

Myocardial Infarctions 
Population (65-99 y) 2,100 4,100 5,300 6,000 6,600 
Total incidence 55 110 160 190 210 

Hospitalization, Non-fatal Acute 
Myocardial Infarction   

Population (65-99 y) 2,100 4,100 5,300 6,000 6,600 
Total incidence 11 23 32 37 41 

Hospitalization, Respiratory Population (65-99 y) 2,100 4,100 5,300 6,000 6,600 
Total incidence 51 100 150 170 190 

Mortality, All-cause Population (30-99 y) 9,400 12,000 14,000 15,000 16,000 
Total incidence 120 170 240 290 320 

Mortality, Cardiopulmonary Population (30-99 y) 9,400 12,000 14,000 15,000 16,000 
Total incidence 51 69 100 120 140 

Mortality, Lung Cancer Population (30-99 y) 9,400 12,000 14,000 15,000 16,000 
Total incidence 6.2 8 8.9 9.5 11 

Coarse dust Emergency Department Visits, Asthma   Population (0-99 y) 16,000 19,000 22,000 24,000 26,000 
Total incidence 74 84 95 110 110 

Mortality, Cardiovascular* Population (0-99 y) 16,000 19,000 22,000 24,000 26,000 
Total incidence 51 69 100 120 140 

*Cardiovascular mortality endpoint approximated from cardiopulmonary incidence (note that when rounded to 2 s.f., the incidence appears to be the same for the 
30-99 and 0-99 year age groups). 
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Table S3. List of relative risk values for different health endpoints associated with PM2.5 exposure used in this study.  
 
Health Endpoint Epidemiological study Cohort age 

(years) 
Cohort location Relative risk per 

10 µg m-3 (95% 
CI) 

Function type 

Mortality, all-cause Krewski et al. (2009) 30-99 US nationwide 1.06 (1.04-1.08) Log-linear 
Mortality, cardiopulmonary 1.13 (1.10-1.16) Log-linear 

Mortality, lung cancer  1.14 (1.06-1.23) Log-linear 
Hospital admissions, all 
cardiovascular (less 
myocardial infarction) 

Zanobetti et al. (2009) 65-99 26 US 
communities 

1.02 (1.01-1.03) Log-linear 

Hospital admissions, 
respiratory 

1.02 (1.01-1.03) Log-linear 

Hospital admissions, non-
fatal acute myocardial 
infarction 

Peters et al. (2001) 65-99 Boston, MA 1.62 (1.13-2.34) Logistic 

 
 
Table S4. List of relative risk values for different health endpoints associated with PM2.5-10 exposure used in this study. 
 
Health Endpoint Epidemiological study Cohort age 

(years) 
Cohort location Relative risk per 

10 µg m-3 (95% 
CI) 

Function type 

Mortality, cardiovascular Malig and Ostro (2009) 0-99 Multiple cities, 
CA 

1.01 (1.00-1.03) Logistic 

Emergency department 
visits, asthma 

Malig et al. (2013) 0-99 Multiple cities, 
CA 

1.03 (1.02-1.05) Logistic 
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Table S5. Percent of incidence attributable to each age group by health endpoint and 20-year era. The percentages are calculated by 
dividing the estimated incidence associated with each age group by the total annual incidence found in Table S2. 

      20-year era 
Pollutant Health Endpoint Age group 

(years) 
2030 2050 2070 2090 

Fine Dust Mortality, all-cause* 30-74 29% 16% 12% 12% 
75-99 71% 84% 88% 88% 

Coarse Dust Emergency department visits, asthma 0-17 37% 37% 36% 36% 
18-74 56% 54% 54% 54% 
75-99 7% 9% 10% 11% 

Mortality, cardiovascular 0-17 0.1% 0.1% < 0.1% < 0.1% 
18-74 22% 12% 9% 9% 
75-99 78% 88% 91% 91% 

*All-cause mortality was only calculated for ages 30-99, as age is restricted by the underlying epidemiological study.  
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Table S6. Annual economic damages (millions USD 2015$) associated with the health burdens in Table 2. The historical reference 
value is estimated using 2010 population and baseline incidence rates combined with 1988-2005 dust concentrations. Values shown 
for future scenarios at 20-year intervals are the excess cost relative to the reference value. “AQ-constant” projections are due to the 
effects of changing population and baseline incidence rates. RCP projections are due to the combined effects of changing dust 
concentrations, population, and baseline incidence rates. For each health endpoint and 20-year era, the total cost is equal to the sum of 
the reference and excess costs projected for each future scenario. Values in parentheses represent the range of variability in the CMIP5 
model ensemble for a given RCP scenario. Values are rounded to two significant figures.  

Pollutant Health endpoint Age 
(years) 

Reference 
value 

(per year) 

 20-year averaged excess damage relative to reference (per year) 

Scenario 2030 2050 2070 2090 

Fine dust 

Hospitalization, 
Cardiovascular 
less Myocardial 

Infarctions 

65-99 5.7 

AQ constant 4.8 9.3 12 14 

RCP4.5 6.0  
(5.1,6.8) 

12  
(11,13) 

15  
(14,19) 

18  
(16,22) 

RCP8.5 6.0  
(5.3,6.5) 

12  
(11,14) 

17  
(16,20) 

21  
(18,25) 

Hospitalization, 
Non-fatal Acute 

Myocardial 
Infarction 

65-99 
 38 

AQ constant 32 60 75 87 

RCP4.5 40  
(34,46) 

75  
(70,83) 

97  
(90,110) 

120  
(100,140) 

RCP8.5 40  
(35,44) 

80  
(72,90) 

110  
(98,130) 

130  
(120,160) 

Hospitalization, 
Respiratory 65-99 4.7 

AQ constant 4 7.7 9.8 11 

RCP4.5 5.0  
(4.2,5.7) 

9.7  
(9.0,11) 

13  
(12,14) 

15  
(13,18) 

RCP8.5 5.0  
(4.4,5.5) 

10  
(9.2,11) 

14  
(13,17) 

17  
(15,21) 

Mortality, All-
cause 30-99 8200 

AQ constant 4800 10000 15000 19000 

RCP4.5 6300  
(5100,7200) 

13000  
(12000,15000) 

20000  
(19000,23000) 

27000  
(23000,32000) 

RCP8.5 6300  
(5400,6900) 

14000  
(13000,16000) 

23000  
(20000,27000) 

31000  
(20000,38000) 

Mortality, 
Cardiopulmonary 

30-99 
 7400 

AQ constant 3300 8800 13000 18000 

RCP4.5 4500  
(3600,5300) 

12000  
(11000,13000) 

18000  
(16000,20000) 

25000  
(21000,30000) 
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RCP8.5 4600  
(3800,5100) 

12000  
(11000,14000) 

20000  
(18000,24000) 

29000  
(24000,36000) 

Mortality, Lung 
Cancer 

30-99 
 1000 

AQ constant 420 640 820 1200 

RCP4.5 570  
(460,670) 

900  
(820,1000) 

1200  
(1100,1400) 

1800  
(1500,2200) 

RCP8.5 580  
(480,640) 

990  
(840,1100) 

1400 
(1200,1800) 

2100  
(1700,2600) 

Coarse dust 

Emergency 
Department Visits, 

Asthma 
0-99 0.85 

AQ constant 0.11 0.23 0.35 0.40 

RCP4.5 0.19  
(0.13,0.25) 

0.36  
(0.32,0.41) 

0.56  
(0.47,0.62) 

0.62  
(0.50,0.77) 

RCP8.5 0.20  
(0.14,0.23) 

0.40  
(0.33,0.47) 

0.63  
(0.53,0.78) 

0.75  
(0.61,0.96) 

Mortality,  
Cardiovascular* 0-99 4500 

AQ constant 2100 5600 8400 11000 

RCP4.5 2700  
(2200,3100) 

6900  
(6500,7400) 

11000  
(9900,12000) 

14000  
(13000,16000) 

RCP8.5 2700  
(2300,2900) 

7400  
(6700,8100) 

12000  
(11000,14000) 

16000  
(14000,19000) 
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Table S7. Sensitivity of VSL and total valuation estimates to alternative economic growth and income elasticity inputs (million 
2015$). 
 

Key Assumptions 2030 2050 2070 2090 

With GDP/capita growth and income elasticity =0.4 $11.0 $12.4 $13.8 $15.2 

With GDP/capita growth and income elasticity =1.0 $12.8 $17.3 $22.4 $28.4 

 Change based on alternative income elasticity 16% 39% 62% 87% 

 


